1,674 research outputs found

    Frank's constant in the hexatic phase

    Full text link
    Using video-microscopy data of a two-dimensional colloidal system the bond-order correlation function G6 is calculated and used to determine the temperature-dependence of both the orientational correlation length xi6 in the isotropic liquid phase and the Frank constant F_A in the hexatic phase. F_A takes the value 72/pi at the hexatic to isotropic liquid phase transition and diverges at the hexatic to crystal transition as predicted by the KTHNY-theory. This is a quantitative test of the mechanism of breaking the orientational symmetry by disclination unbinding

    Elastic Behavior of a Two-dimensional Crystal near Melting

    Full text link
    Using positional data from video-microscopy we determine the elastic moduli of two-dimensional colloidal crystals as a function of temperature. The moduli are extracted from the wave-vector-dependent normal mode spring constants in the limit q→0q\to 0 and are compared to the renormalized Young's modulus of the KTHNY theory. An essential element of this theory is the universal prediction that Young's modulus must approach 16π16 \pi at the melting temperature. This is indeed observed in our experiment.Comment: 4 pages, 3 figure

    The experimental realization of a two-dimensional colloidal model system

    Full text link
    We present the technical details of an experimental method to realize a model system for 2D phase transitions and the glass transition. The system consists of several hundred thousand colloidal super-paramagnetic particles confined by gravity at a flat water-air interface of a pending water droplet where they are subjected to Brownian motion. The dipolar pair potential and therefore the system temperature is not only known precisely but also directly and instantaneously controllable via an external magnetic field B. In case of a one component system of monodisperse particles the system can crystallize upon application of B whereas in a two component system it undergoes a glass transition. Up to 10000 particles are observed by video microscopy and image processing provides their trajectories on all relative length and time scales. The position of the interface is actively regulated thereby reducing surface fluctuations to less than one micron and the setup inclination is controlled to an accuracy of 1 microrad. The sample quality being necessary to enable the experimental investigation of the 2D melting scenario, 2D crystallization, and the 2D glass transition, is discussed.Comment: 13 pages, 11 figure

    Magnetic properties of Quantum Corrals from first principles calculations

    Full text link
    We present calculations for electronic and magnetic properties of surface states confined by a circular quantum corral built of magnetic adatoms (Fe) on a Cu(111) surface. We show the oscillations of charge and magnetization densities within the corral and the possibility of the appearance of spin--polarized states. In order to classify the peaks in the calculated density of states with orbital quantum numbers we analyzed the problem in terms of a simple quantum mechanical circular well model. This model is also used to estimate the behaviour of the magnetization and energy with respect to the radius of the circular corral. The calculations are performed fully relativistically using the embedding technique within the Korringa-Kohn-Rostoker method.Comment: 14 pages, 9 figures, submitted to J. Phys. Cond. Matt. special issue on 'Theory and Simulation of Nanostructures

    Harmonic lattice behavior of two-dimensional colloidal crystals

    Full text link
    Using positional data from video-microscopy and applying the equipartition theorem for harmonic Hamiltonians, we determine the wave-vector-dependent normal mode spring constants of a two-dimensional colloidal model crystal and compare the measured band-structure to predictions of the harmonic lattice theory. We find good agreement for both the transversal and the longitudinal mode. For q→0q\to 0, the measured spring constants are consistent with the elastic moduli of the crystal.Comment: 4 pages, 3 figures, submitte

    Spin-dependent electrical transport in ion-beam sputter deposited Fe-Cr multilayers

    Full text link
    The temperature dependence of the electrical resistivity and magnetoresistance of Xe-ion beam sputtered Fe-Cr multilayers has been investigated. The electrical resistivity between 5 and 300 K in the fully ferromagnetic state, obtained by applying a field beyond the saturation field (H_sat) necessary for the antiferromagnetic(AF)-ferromagnetic(FM) field-induced transition, shows evidence of spin-disorder resistivity as in crystalline Fe and an s-d scattering contribution (as in 3d metals and alloys). The sublattice magnetization m(T) in these multilayers has been calculated in terms of the planar and interlayer exchange energies. The additional spin-dependent scattering \Delta \rho (T) = \rho(T,H=0)_AF - \rho(T,H=H_sat)_FM in the AF state over a wide range of temperature is found to be proportional to the sublattice magnetization, both \Delta \rho(T) and m(T) reducing along with the antiferromagnetic fraction. At intermediate fields, the spin-dependent part of the electrical resistivity (\rho_s (T)) fits well to the power law \rho_s (T) = b - cT^\alpha where c is a constant and b and \alpha are functions of H. At low fields \alpha \approx 2 and the intercept b decreases with H much the same way as the decrease of \Delta \rho (T) with T. A phase diagram (T vs. H_sat) is obtained for the field- induced AF to FM transition. Comparisons are made between the present investigation and similar studies using dc magnetron sputtered and molecular beam epitaxy (MBE) grown Fe-Cr multilayers.Comment: 8 pages, 10 figures, to appear in Phys. Rev.

    Injection of photoelectrons into dense argon gas

    Full text link
    The injection of photoelectrons in a gaseous or liquid sample is a widespread technique to produce a cold plasma in a weakly--ionized system in order to study the transport properties of electrons in a dense gas or liquid. We report here the experimental results of photoelectron injection into dense argon gas at the temperatureT=142.6 K as a function of the externally applied electric field and gas density. We show that the experimental data can be interpreted in terms of the so called Young-Bradbury model only if multiple scattering effects due to the dense environment are taken into account when computing the scattering properties and the energetics of the electrons.Comment: 18 pages, 10 figures, figure nr. 10 has been redrawn, to be submitted to Plasma Sources Science and Technolog

    Interlayer Exchange Coupling Mediated by Valence Band Electrons

    Full text link
    The interlayer exchange coupling mediated by valence band electrons in all-semiconductor IV-VI magnetic/nonmagnetic superlattices is studied theoretically. A 3D tight-binding model, accounting for the band and magnetic structure of the constituent superlattice components is used to calculate the spin-dependent part of the total electronic energy. The antiferromagnetic coupling between ferromagnetic layers in EuS/PbS superlattices is obtained, in agreement with the experimental evidences. The results obtained for the coupling between antiferromagnetic layers in EuTe/PbTe superlattices are also presented.Comment: 8 pages, 6 figures, to be submitted to Phys.Rev.

    Testing the relevance of effective interaction potentials between highly charged colloids in suspension

    Full text link
    Combining cell and Jellium model mean-field approaches, Monte Carlo together with integral equation techniques, and finally more demanding many-colloid mean-field computations, we investigate the thermodynamic behavior, pressure and compressibility of highly charged colloidal dispersions, and at a more microscopic level, the force distribution acting on the colloids. The Kirkwood-Buff identity provides a useful probe to challenge the self-consistency of an approximate effective screened Coulomb (Yukawa) potential between colloids. Two effective parameter models are put to the test: cell against renormalized Jellium models
    • …
    corecore